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1 Facultad de Matemáticas, Astronomı́a y F́ısica, Universidad Nacional de Córdoba 5000 Córdoba, Argentina
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Abstract. Here we address a fundamental issue in surface physics: the dynamics of adsorbed molecules.
We study this problem when the particle’s desorption is characterized by a non Markovian process, while
the particle’s adsorption and its motion in the bulk are governed by a Markovian dynamics. We study
the diffusion of particles in a semi-infinite cubic lattice, and focus on the effective diffusion process at the
interface z = 1. We calculate analytically the conditional probability to find the particle on the z = 1 plane
as well as the surface dispersion as functions of time. The comparison of these results with Monte Carlo
simulations show an excellent agreement.

PACS. 46.65.+g Random phenomena and media – 05.40.Fb Random walks and Levy flights –
05.10.Ln Monte Carlo methods – 02.50.Ey Stochastic processes

1 Introduction

The mechanism called bulk-mediated surface diffusion typ-
ically arises at interfaces separating a liquid bulk phase
and a second phase which may be either solid, liquid, or
gaseous. Whenever the adsorbed species is soluble in the
liquid bulk, adsorption-desorption processes occur contin-
uously. These processes generate surface displacement be-
cause desorbed molecules undergo Fickian diffusion in the
liquid’s bulk, and are latter re-adsorbed elsewhere. When
this process is repeated many times, an effective diffu-
sion results for the molecules on the surface. The impor-
tance of bulk-surface exchange in relaxing homogeneous
surface density perturbations is experimentally well es-
tablished [1–5]. Adsorption at the solid-liquid interfaces
arises, for instance, in many biological contexts involv-
ing protein deposition [6–8], in solutions or melts of syn-
thetic macromolecules [9–12], in colloidal dispersions [13],
and in the manufacture of self-assembly mono- and multi-
layers [14–17].

Usually the studies performed in this type of systems
are done within the framework of a Master Equation
scheme [18,19], where the particle’s motion through the
bulk and the adsorption-desorption processes are Marko-
vian. In two recent papers [20,21] we have shown the most
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important features of these phenomena. Non Markovian
diffusion processes have been used in order to modelling
a great diversity of phenomena some of the most rele-
vant are: anomalous charge transport in amorphous ma-
terials [22], diffusion of particles with internal states [23],
chromatography [18], dielectric relaxation due to defect
diffusion [24].

We address one of the fundamental issues in surface
physics: the dynamics of adsorbed molecules. We study
this problem when the particle’s desorption is character-
ized by a non Markovian process, while the particle’s ad-
sorption and its motion in the bulk are governed by a
Markovian dynamics. We analyze the diffusion of parti-
cles in a semi-infinite cubic lattice, and focus on the ef-
fective diffusion process at the interface z = 1. We cal-
culate analytically the conditional probability to find the
particle on the z = 1 plane as well as the surface disper-
sion as functions of time, and test those results compar-
ing with Monte Carlo simulations. When non Markovian
processes are present Generalize Master Equations are in-
volved, these equations being characterized by a “memory
kernel” that is related univocally with a Continuous Time
Random Walk (CTRW) scheme [25].

Non Markovian desorption has been introduced in
many fields of natural science describing transport pro-
cesses in chemical reactions [26], re-emission when surfaces
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contains “deep traps” [27], capture and re-emission from
surfaces that contain sites with many internal states such
the “ladder trapping model” [28], proteins with active sites
deep inside its matrix [29], etc.

The main goal of this work is to get information about
the influence of a non Markovian desorption dynamics on
the effective diffusion process at the interface z = 1, and
in this way to develop some criteria for looking for non
Markovian desorption effects in experimental situations.
For that purpose we calculate analytically the temporal
evolution of the variance (〈r2(t)〉plane) and the conditional
probability of being on the surface at time t since the
particle arrived there at t = 0 (P (x, y, z = 1; t|0, 0, 1, t =
0)), that we indicate by P (z = 1, t).

When ψ(t), the waiting time density for desorption
defined in the CTRW scheme, has a finite first moment
we have been able to establish the long time asymptotic
behavior for 〈r2(t)〉plane and P (z = 1, t) for any non-
Markovian desorption. This behavior is the same as the
Markovian one and only depends on the first moment
of ψ(t). We also analyzed the behavior associated to two
different families of desorption waiting time densities. For
the first one we have observed two regions, called strong
and weak adsorption regime (to be defined later). In the
strong adsorption limit we observe a transient regime,
where the temporal evolution is characterized by damped
oscillations (its frequency not depending on the degree of
departure from Markovian behavior), and a Markovian
asymptotic one. The oscillatory effects disappear in the
weak adsorption region. For the second kind of desorp-
tion dynamics, a transient regime with a non-monotonic
behavior for the slope of the variance emerges, the asymp-
totic behavior being again Markovian like.

The organization of the paper is as follows. In the
next section we formally present the model, supported by
a Generalized Master Equation which describe the par-
ticle’s dynamics through the bulk and the adsorption-
desorption dynamics at the surface. We devote Section 3
to present and discuss the time dependence of 〈r2(t)〉plane

and P (z = 1, t) for two families of specific memory ker-
nels, and compare the analytical results with Monte Carlo
simulations in the first case, and discuss the general char-
acteristics in the second. In Section 4 we study the asymp-
totic behavior of the aforementioned magnitudes, in the
asymptotic long time limit. In the last Section we discuss
the results and present some conclusions.

2 The adsorption-desorption model

Let us start with the problem of a particle making a ran-
dom walk in a semi-infinite cubic lattice (with a lattice
constant equal to one). The position of the walker is de-
fined by a vector �r whose components are denoted by a
set of integer numbers n,m, l corresponding to the direc-
tions x, y and z respectively. The probability that the
walker is at (n,m, l) for time t given it was at (0, 0, l0)
at t = 0, P (n,m, l; t|0, 0, l0, t = 0) = P (n,m, l; t), satisfies

the following Generalized Master Equation

Ṗ (n,m, 1; t) = γP (n,m, 2; t)

−
∫ t

0

dt′K(t′)P (n,m, 1; t− t′), for l = 1

Ṗ (n,m, 2; t) =
∫ t

0

dt′K(t′)P (n,m, 1; t− t′)

+ γP (n,m, 3; t) − γP (n,m, 2; t)

+ α
[
P (n− 1,m, 2; t) + P (n+ 1,m, 2; t)

− 2P (n,m, 2; t)
]

+ β
[
P (n,m− 1, 2; t) + P (n,m+ 1, 2; t)

− 2P (n,m, 2; t) ], for l = 2

Ṗ (n,m, l; t) = α[P (n− 1,m, l; t) + P (n+ 1,m, l; t)
− 2P (n,m, l; t)]

+ β
[
P (n,m− 1, l; t) + P (n,m+ 1, l; t)

− 2P (n,m, l; t)
]

+ γ[P (n,m, l+ 1; t) + P (n,m, l− 1; t)
− 2P (n,m, l; t)], for l ≥ 3, (1)

α, β and γ are the transition probabilities per unit time
through the bulk in the x, y and z directions respec-
tively and K(t) represents the memory kernel at all
sites (n,m, l = 1) and (n,m, l = 2). The form of these
equations is similar to those indicated in [20,21], with the
desorption parameter δ replaced by the kernel K(t).

In order to solve the above equations we follow the
same procedure as in [20,21], taking the Fourier trans-
form with respect to the x and y variables and the Laplace
transform with respect to the time t in the above equa-
tions, we obtain

sG(kx, ky, 1; s) − P (kx, ky, 1, t = 0) =
γG(kx, ky, 2; s) −K(s)G(kx, ky, 1; s), l = 1

sG(kx, ky, 2; s) − P (kx, ky, 2, t = 0) =
A(kx, ky)G(kx, ky, 2; s) +K(s)G(kx, ky, 1; s)

+ γG(kx, ky, 3; s) − 2γG(kx, ky, 2; s), l = 2
sG(kx, ky, l; s) − P (kx, ky, l, t = 0) =

A(kx, ky)G(kx, ky, l; s) + γ
[
G(kx, ky, l − 1; s)

+G(kx, ky, l + 1; s) − 2G(kx, ky, l; s)
]

l ≥ 3. (2)

We have used the following definitions [20,21]

G(kx, ky, l; s) = G(kx, ky, l; s|0, 0, l0; t = 0)

=
∫ ∞

0

e−st
∞∑

n,m,−∞
ei(kxn+kym)P (n,m, l; t)dt

= L

[ ∞∑
n,m,−∞

ei(kxn+kym)P (n,m, l; t)

]
, (3)

where L indicates the Laplace transform of the quantity
within the brackets, and [20,21]

A(kx, ky) = 2α[cos(kx) − 1] + 2β[cos(ky) − 1]. (4)
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Equation (2) may be expressed in matrix form as

[sĨ − H̃ ]G̃ = Ĩ , (5)

where the square matrix G̃ has components

G̃ll0 = [G[kx, ky, l; s|0, 0, l0; t = 0]]. (6)

Ĩ is the identity matrix and H̃ is a three-diagonal matrix
with the following form

H̃ =




−K(s) γ 0 0 0 · · ·
K(s) C γ 0 0 · · ·

0 γ C γ 0 · · ·
0 0 γ C γ · · ·
· · · · · · · ·


 ,

where C is defined as

C = −2γ +A(kx, ky). (7)

Above equations for G(kx, ky, l; s) are similar to equa-
tion (2) and equation (5) in [20] with K(s) replacing δ.
Therefore, all results obtained in that paper remains valid
for non-Markovian dynamic when δ is replaced by K(s)
in the Laplace domain.

The expression for the Laplace transform of the vari-
ance (〈r2(s)〉plane) became

L[〈r2(t)〉plane] = 〈r2(s)〉plane =
N(s)
D(s)

, (8)

with

N(s) = [4K(s)γ(α+ β)]

×
[
2γ3 − s2

(√
s(4γ + s) − s

)
− 3γ2

(√
s(4γ + s) − 3s

)

− 2γs
(
2
√
s(4γ + s) − 3s

) ]
, (9)

D(s) =
√
s(4γ + s)

×
[
γs

(
2γ + s−

√
s(4γ + s)

)
+K(s)

(
γ

(√
s(4γ + s) − 3s

)

+ s
(√

s(4γ + s) − s
))]2

. (10)

The Laplace transform of P (z = 1, s), the conditional
probability of being in the surface, is

L[P (z = 1, t)] = P (z = 1, s) =
[
γ(2γ + s−

√
s(4γ + s)

]

×
[
γs

(
2γ + s−

√
s(4γ + s)

)
+K(s)

(
γ

(√
s(4γ + s) − 3s

)

+s(
√
s(4γ + s) − s)

)]−1

. (11)

Finally we want to point out that the relation be-
tween ψ(t), the waiting time density for the desorption
processes defined in the CTRW scheme, and the mem-
ory kernel of equation (1) [25] in the Laplace domain is
given by

K(s) =
sψ(s)

(1 − ψ(s))
. (12)

3 Analytical results and Monte Carlo
simulations

Here we show the results obtained analytically and com-
pare them with Monte Carlo simulations. In all cases
we have fixed the parameters: α = β = γ = 1. The
simulations results were obtained averaging over 2 ×
106 realizations.

To describe the desorption dynamics from the sur-
face we have chosen two families of waiting time densi-
ties (ψ(t)). The first of them was introduced by Scher
and Lax [22] to describe the frequency dependence of the
electric conductivity in disordered solids when transport is
due to impurity hopping. It has been extensively exploited
in modelling non Markovian cases that emerge when an
average over transition rates (disorder) is taking into ac-
count [22] and [25]. The reason of its wide use are its versa-
tile functional form and its simplicity which allows to take
into account a controllable spread of transition rates [22].
When only one transition rate is present the Markovian
description is reobtained (the memory kernel is a Dirac
delta function) and when the spread is very wide, steps
occur at fixed regular intervals of time (see below). The
adopted function (see also [30]) is

ψ(t) = θa
(θat)(a−1)

Γ (a)
e−θat, (13)

where a is a positive integer and Γ (a) is the Gamma or
Factorial function. It is worth remarking here two impor-
tant facts about this family of functions. First, as can
be seen from the equation (13), there are two parameters
which characterized the function. The parameter a, called
markovianicity parameter, defines the degree of function’s
departure from the Markovian behavior (a = 1 corre-
sponds to the Markovian case; a �= 1 to the non-Markovian
case), while the parameter θ is the “average desorption’s
rate”. Second, as shown in [30], the mean value of these
waiting time densities is

〈t〉 =
∫ ∞

0

t ψ(t) dt = θ−1, (14)

showing that the “average desorption’s time” does not de-
pends on the parameter a. For the form of this family of
functions, see Figure 1 in [30].

In Figures 1 and 2 we present the temporal evolution
for the conditional probability (P (z = 1, t)) for the Marko-
vian and two non Markovian cases (two different values
of a) with the same value of θ. From these figures we
can observe two temporal regions: a transient one which
ranges from t = 0 to t ≈ 1000 and an asymptotic region
(t > 1000) where the behavior approaches that of the
Markovian case. It is important to remark the existence
of damped oscillations in the transient region for the non
Markovian case. This oscillatory behavior is due to the
waiting time density functions used as will be explained
later.

In Figures 3 and 4 we depict the results for the vari-
ance 〈r2(t)〉plane, for both the Markovian and the two dif-
ferent non Markovian cases (a = 75 and a = 100). We can
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Fig. 1. Temporal evolution of the P (z = 1, t). We have rep-
resented the case for θ = 0.01. Dot line depicts Markovian
evolution, meanwhile continuous line and open circles (which
correspond to Monte Carlo simulations) represent the non
Markovian case for a = 20.

observe two important features. The first one is that the
variance in the non Markovian regime shows a delay in
the beginning of the spreading. The second feature is that
the system presents an oscillatory-like behavior, with the
oscillations attenuating as the time grows. This fact is still
more apparent in the insert of the figures where we show
the temporal evolution of the spreading velocity (VSpread).
It is worth remarking here that oscillations only appears
in the non Markovian case with a� 1 and are due to the
particular behavior of the family of waiting time density
defined by equation (13). As it is known, this function goes
to a Dirac delta function as the markovianicity parame-
ter a → ∞ (ψ(t) ⇒ δ(t − θ−1)), implying a periodic-like
behavior. This “periodicity” explains the oscillatory be-
havior of P (z = 1, t) and 〈r2(t)〉plane. Also the figures
show an excellent agreement between the theoretical and
Monte Carlo simulation results.

We remark here that we can distinguish two region de-
fined by the ratio θ/γ. The strong adsorption region char-
acterized by θ

γ 
 1 where the non Markovian character
shows important differences respect to the Markovian case
in the transient temporal regime and the weak adsorption
region ( θ

γ > 1) where these differences disappear.

Another worth remarking point from these figures is
that ω, the frequency in the oscillation, remains unper-
turbed due to the fact that all desorption waiting time

Fig. 2. Temporal evolution of the P (z = 1, t). We have rep-
resented the case for θ = 0.01. Dot line depicts Markovian
evolution, meanwhile continuous line and open circles (which
correspond to Monte Carlo simulations) represent the non
Markovian case for a = 75.

Fig. 3. Temporal evolution of the 〈r2(t)〉plane. We have taken
θ = 0.01. The solid line and open circles (which correspond to
Monte Carlo simulations) depict the non Markovian case with
a = 75. In the insert we can see the VSpread vs. t for this case
(solid line) and the Markovian evolution (dot line).
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Fig. 4. Temporal evolution of the variance 〈r2(t)〉plane. We
have represented two cases. Dot line represents the Marko-
vian case and the continuous line depict the non Markovian
(a = 100) for θ = 0.01. In the insert the curve denoted by a
represents the Markovian case; the b curve represents the non
Markovian one.

densities used have the same “average desorption’s time”.
This aspect becomes apparent in Figure 5.

The second class of desorption dynamics that we con-
sider in this work corresponds to the so called “direct-
access multi-trapping process” [28]. Such an approach was
proposed in order to describe in a phenomenological man-
ner the transport of excited charge carriers across amor-
phous material [31,32], or the motion of interstitial in met-
als [33], etc. When the walker arrives at a surface site this
model considers transitions to and from (N − 1) internal
states, both with probability λ per unit time, before it des-
orbs to the bulk with probability δ. The resulting desorp-
tion probability waiting time density in Laplace domain is

ψ(s) =
δ

δ + s(1 + λ(N−1)
s+λ )

(15)

and the “average desorption’s rate” in this case is 〈t〉 = N
δ .

For a detailed analysis of this model and derivation of
equation (15) see reference [28]. In Figures 6 and 7 we
depict the results for the variance 〈r2(t)〉plane for two dif-
ferent non Markovian cases (N = 2 and N = 10 respec-
tively). We also show the Markovian behavior with the
same average time for each case (〈t〉 = 2 for N = 2 and

Fig. 5. ω vs. θ. Open circles represents a = 100, squares a =
200 and cruxes a = 500.

Fig. 6. Temporal evolution of the 〈r2(t)〉plane. The solid line
depicts the non Markovian case with N = 2, δ = 1 and λ =
0.01 and the dot line the Markovian one. In the insert we can
see the VSpread vs. t for this case (solid line) and the Markovian
evolution (dot line).
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Fig. 7. Temporal evolution of the 〈r2(t)〉plane. The same pa-
rameters as in Figure 6 but with N = 10.

〈t〉 = 10 for N = 10). We can observe that the tempo-
ral evolution of the variance in the non Markovian case
shows a transient regime characterized by the slope’s non-
monotonic behavior, which increases with N . This fact
is still more apparent in the insert of the figures where
we show the temporal evolution of the spreading veloc-
ity (VSpread).

4 Asymptotic behavior

The asymptotic behavior for large t of 〈r2(t)〉plane and
P (z = 1, t) can be obtained analyzing the limit s
 1. We
assume that ψ(t), the waiting time density for desorption,
has a finite first moment 〈t〉 which means that ψ(t) ∼
1−〈t〉s when s
 1 and consequently K(s) ∼ 1/〈t〉 in this
limit. From equations (8), (9), (10) and (11) we obtain

〈r2(t)〉plane ∼
√
γ(α+ β)〈t〉

2s
3
2

, (16)

P (z = 1, t) ∼
√
γ〈t〉
s

1
2

. (17)

Exploiting Tauberian theorems [25], the behavior for
large t can be obtained resulting in

〈r2(t)〉plane ∼
√
γ(α+ β)〈t〉
2Γ [3/2]

t
1
2 , (18)

P (z = 1, t) ∼
√
γ〈t〉

Γ [1/2]
t−

1
2 . (19)

Equations (18) and (19) represent the behavior
of 〈r2(t)〉plane and P (z = 1, t) for any non-Markovian
desorption for large values of time. This behavior is the
same as the Markovian one and only depends on the first
moment of ψ(t). It is important to remark that the only
assumption was that ψ(t), the waiting time density for
desorption, has a finite first moment 〈t〉.

5 Conclusions

We have studied here the evolution of particles diffusing
on a surface. The diffusion have been performed across
the bulk surrounding the surface, this phenomenon being
called bulk mediated surface diffusion [20,21]. Usually the
proposed models are based on Markovian desorption pro-
cesses. The main feature of this work was to present an
analytical model for non Markovian desorption from the
surface. The bulk that surrounds this surface was consid-
ered to be semi-infinite and that the particles undergo a
Markovian motion on them.

We observed the influence of the non Markovian des-
orption dynamic on the effective diffusion process at
the interface z = 1 by calculating analytically, in the
Laplace domain, the temporal evolutions of the variance
(〈r2(t)〉plane) and the conditional probability of being on
the surface at time t since the particle arrived there at
t = 0 (P (z = 1, t)). When the waiting time density for des-
orption has a finite first moment we have established the
behavior of the above magnitudes for any non-Markovian
desorption for large values of time. This behavior is the
same as the Markovian one and only depends on the first
moment of ψ(t).

We have chosen two families of non-Markovian des-
orption waiting time densities and tested the analytical
results for 〈r2(t)〉plane and P (z = 1, t) by comparison with
Monte Carlo simulations, obtaining an excellent agree-
ment. For the first desorption waiting time density we
can establish two regions based on the ratio θ/γ, calling
them strong adsorption (this occurs when θ/γ 
 1) and
weak adsorption (when θ/γ ≥ 1). In the strong adsorption
limit we can observe a transient regime and a stationary
one. The main feature in the transient regime is that the
temporal evolution is characterized by damped oscillations
whose frequencies are in direct relation to θ, the average
desorption rate. It is worth remarking here that the fre-
quency does not depend on the markovianicity parameter.
The effect of this parameter appears on the amplitude of
the oscillations which disappear in the weak adsorption re-
gion. For the second kind of desorption dynamics we found
a transient regime with an emerging non-monotonic be-
havior for the slope’s variance. In the asymptotic regime,
the conditional probability of the non Markovian system
tends to the Markovian one as is expected from the analyt-
ical results obtained in Section 4. In a recent paper [34] we
have shown that, when we consider finite or infinite biased
systems, and desorption waiting time densities with finite
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first moment, the variance growths linearly with time in
the asymptotic regime.

Finally, it is worth here remarking an important aspect
of the present approach. We have shown through the above
results that the behavior of 〈r2(t)〉plane and P (z = 1, t)
results to be strongly dependent on the desorption mech-
anism. As the effective dispersion and the percentage of
particles that remain on the plane z = 1 are measurable
magnitudes [19] they could be used to investigate the char-
acteristic and get information about the fundamental pa-
rameters of the desorption processes.

HSW acknowledges the partial support from ANPCyT,
Argentina, and thanks the European Commission for the award
of a Marie Curie Chair.
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